The effects of measurement error in response variables and tests of association of explanatory variables in change models.
نویسندگان
چکیده
Biomedical studies often measure variables with error. Examples in the literature include investigation of the association between the change in some outcome variable (blood pressure, cholesterol level etc.) and a set of explanatory variables (age, smoking status etc.). Typically, one fits linear regression models to investigate such associations. With the outcome variable measured with error, a problem occurs when we include the baseline value of the outcome variable as a covariate. In such instances, one can find a relationship between the observed change in the outcome and the explanatory variables even when there is no association between these variables and the true change in the outcome variable. We present a simple method of adjusting for a common measurement error bias that tends to be overlooked in the modelling of associations with change. Additional information (for example, replicates, instrumental variables) is needed to estimate the variance of the measurement error to perform this bias correction.
منابع مشابه
Partial Association Components in Multi-way Contingency Tables and Their Statistiical Analysis
In analyses of contingency tables made up of categorical variables, the study of relationship between the variables is usually the major objective. So far, many association measures and association models have been used to measure the association structure present in the table. Although the association measures merely determine the degree of strength of association between the study varia...
متن کاملبهکارگیری متغیرهای پنهان در مدل رگرسیون لجستیک برای حذف اثر همخطی چندگانه در تحلیل برخی عوامل مرتبط با سرطان پستان
Background and Objectives: Logistic regression is one of the most widely used generalized linear models for analysis of the relationships between one or more explanatory variables and a categorical response. Strong correlations among explanatory variables (multicollinearity) reduce the efficiency of model to a considerable degree. In this study we used latent variables to reduce the effects of ...
متن کاملEvaluation the best of selective base period of GCM models to determine meteorological variables of Birjand station in future periods
Evaluation the best of selective base period of GCM models to determine meteorological variables of Birjand station in future periods Abstract: Nowadays, determining the effect of a climate change in the various aspects of human life is quite evident. In such a situation, it is very important to determine the base period, which determines the effects of a climate change than in this ...
متن کاملA Generalized Linear Statistical Model Approach to Monitor Profiles
Statistical process control methods for monitoring processes with univariate ormultivariate measurements are used widely when the quality variables fit to known probabilitydistributions. Some processes, however, are better characterized by a profile or a function of qualityvariables. For each profile, it is assumed that a collection of data on the response variable along withthe values of the c...
متن کاملForecast generation model of municipal solid waste using multiple linear regression
The objective of this study was to develop a forecast model to determine the rate of generation of municipal solid waste in the municipalities of the Cuenca del Cañón del Sumidero, Chiapas, Mexico. Multiple linear regression was used with social and demographic explanatory variables. The compiled database consisted of 9 variables with 118 specific data per variable, which were analyzed using a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics in medicine
دوره 17 22 شماره
صفحات -
تاریخ انتشار 1998